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MIXED FINITE ELEMENT METHODS FOR COMPRESSIBLE 
MISCIBLE DISPLACEMENT IN POROUS MEDIA 

SO-HSIANG CHOU AND QIAN LI 

ABSTRACT. A differential system describing compressible miscible displacement 
in a porous medium is given. The concentration equation is treated by a 
Galerkin method and the pressure equation is treated by a parabolic mixed fi- 
nite element method. Optimal-order estimates in L2 and almost optimal-order 
estimates in L' are obtained for the errors in the approximate solutions under 
the condition that h2k+2 (log h1 1)/2 - 0. This condition is much weaker than 
one given earlier by Douglas and Roberts for the same model. Furthermore, we 
obtain the L??(L2(Q))-estimates for the time-derivatives of the concentration 
and the pressure, which were not given by the above authors. In addition, we 
also consider newer mixed spaces in two or three dimensions. 

1. INTRODUCTION 

We shall consider a two-component model for the single-phase, miscible dis- 
placement of one compressible fluid by another in a reservoir Q c R2 of unit 
thickness. Let ci denote the concentration of the ith component of the fluid 
mixture, i = 1, 2. Assume that the density pi of the ith component and the 
pressure p satisfy the equation of state in the form dpi/pi = zi dp, where zi 
is the constant compressibility factor for the ith component. The Darcy veloc- 
ity of the fluid is given by u = -Vp, where k = k(x) is the permeability of 
the medium and ,u = iu(cl, c2) is the concentration-dependent viscosity. Let 
D be a 2 x 2 matrix, D = ( dmI, where ( = (0(x) is the porosity of the rock, 
I is the identity matrix, and dm is the coefficient of molecular diffusion. The 
model we consider is governed by the following differential system: 

(a) d (c) ap + V * u = d(c) AP - V * (a(c)Vp) = q, 

at at (1.1) (b ,0t + b(c)2,P+ u.*Vc -V.*(DVc)-=(c -c)q. 

Here, 

C = C1=1- C, a(c) = a(x, c) = k(x)g(c) , 

Received October 18, 1989; revised September 24, 1990. 
1980 Mathematics Subject Classification (1985 Revision). Primary 65N30. 
This research was supported in part by AFOSR Grant 88-0234. 

( 1991 American Mathematical Society 
0025-5718/91 $1.00 + $.25 per page 

507 



508 SO-HSIANG CHOU AND QIAN LI 

bl(c) = bl(x, c) = ((x)cl iz - E z c1} 

2 

d(c) = d(x, c) = ?p(x) E zjcj, 
j=1 

q = the external volumetric flow rate, 

and 

c= the concentration of the 1St component in the external flow. 

We impose the no-flow conditions on the boundary: 

(1.2) (a) u.v=O on OQ, 
(1.2) (b) (DVc - cu) *v = 0 on &Q, 

where v is the outer normal to 09Q. In addition, the initial conditions are 

(1.3) (a) p(x,0)=p0(x), xeQ, 
(b) c(x, 0) =c0(x), x E Q. 

The differential system (1.1) under the conditions (1.2) and (1.3) has been care- 
fully derived by Douglas and Roberts [4], using sound physical reasoning. In 
[4], two numerical schemes for approximating the solution of the system (1. 1)- 
(1.3) were given. In both procedures the concentration equation (1.ib) was 
treated by a parabolic Galerkin procedure. In their second scheme the pressure 
equation was treated by a parabolic mixed finite element technique. The error 
analysis of the procedures was carried out under the assumptions that the so- 
lution is smooth, i.e., q is smoothly distributed, the coefficients are smooth, 
and the domain has at least the regularity required for a standard elliptic Neu- 
mann problem to have H (Q)-regularity, and more, if the piecewise-polynomial 
spaces used in the finite element procedures have degree greater than one. Fur- 
thermore, the coefficients a, d, vo are assumed to be bounded below positively. 

The mixed space used in [4] is that of Raviart and Thomas. In this paper we 
also consider the newer spaces such as the BDM space [3] in two dimensions, 
the BDFM space [2], and the Nedelec space [8] in three dimensions. 

Optimal L -estimates and quasi-optimal L?-estimates for the errors have 
been given in [4] under the conditions that the maximum diameters hc and 
hp for the "concentration finite element space" and the "pressure finite element 
space," respectively, satisfy certain restrictions [4, relations (4.18) and (4.28)]. 
One of the purposes of this paper is to show that one can replace these restric- 
tions by a much weaker condition (see (4.31) below) and at the same time obtain 
optimal L -estimates and quasi-optimal L?-estimates. In addition, those opti- 
mal results hold for the newer spaces of [2, 3, 8]. Our analysis differs from that 
of [4] in one fundamental aspect. The mixed elliptic projection [4, equation 
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(4.1)] is replaced by a nonlinear version of the elliptic projection presented in 
[6]. 

The rest of this paper is organized as follows. In ?2, we give the weak for- 
mulations of the system (1.1)-(1.3) and discuss the associated finite element 
spaces. Section 3 is devoted to the error estimates for the concentration equa- 
tion. The error estimates for the pressure equation are derived in ?4, and the 
main results of the paper are contained in Theorem 4.1. In ?5 we extend our 
results to three dimensions. A relation (5.1) relating discretization parameters 
is found, and optimal results are proved under this relation. 

2. WEAK FORMULATIONS AND FINITE ELEMENT APPROXIMATIONS 

We begin by putting (1. lb) into the following equivalent form: 

(2.1) fi ac - V V(DVc) + u * Vc - b(c)V * u = g(c), 

where b(c) = bI(c)d l(c. Let (,) denote the inner product in L2(Q) or in 
L 2(Q)2. Using Green's formula and (1.2), we have 

-(b(c)V * u, z) = (b(c)u, Vz) + Ob8 Zj (+Ob * Z 

Thus, the weak form of (2.1) is to find a map c: J -- H (Q) such that 

(2.2) (f t^3S(0, Z) + (DVc, Vz) + (b(c)u, Vz) + (e(c)u. Vc, z) 

+ (B(c) * u, z) = (g(c), z), z E H (Q), 

where e(c) = 9b (c) + 1, B(c) = b= 0, and J = [O. T]. 
Let H(div, Q) = {v: v E L 2(Q)2, Vv E L 2(Q)}, V = {v: v E H(div, Q), 

v * v = 0 on OQ}, and W = L 2(Q). Then the pressure equation (1.la) is 
equivalent to the saddle point problem [4]: find'a map {u, p}: J -- V x W 
such that 

(2.3) (a) (d(c)ap w) +(V-u,w)=(q,w), w E W, 
(b) (a(c)u,v)-(V 7v,p)=O, v E V, 

where a(c) = a(c) 1a 
To handle the nonzero initial conditions imposed on p and c, we introduce 

the following transformations: 

c(x, t) = c*(x, t) + co(x), p(x, t) = p*(x, t) + pO(X), 
(2.4) u(x, t) = [-a(c* + co)V(p* + po) + a(cO) VpO] - a(cO)VpO 

= u*(X, t) + U0(X)) 
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The reason for introducing these transformations is to validate equations (3.16) 
and (4.22) below. Now (2.2) can be written as 

( at z z) + (DVc*, Vz)+(b*(c*)u*, Vz)+(b*(c*)uo, Vz) 

(2.5) + (e*(c*)u* Vc*, z) + (e*(c*)uO* Vc, z) + (A*(c*) * u, z) 

= (f* (c*), z) - (DVco, Vz), z E H (Q), 

where 
b*(c*) = b(c* + co), e*(c*) = e(c* + co), 

A (c*) = B(c* + co) + e(c* + co)Vco, 

(c = g(c +?co) - [e(c + co)Vco+ B(c +?co)]*u0. 

Similarly, (2.3) can be expressed as 

(a) (d* (c*) at , w) +(V*u*, w) = (r, w), w E W, 
(2.6) 

(b) (a*(c*)u*, v) - (V v , p*) 
=(V v, po) - (*(c*)uo v), v eV 

where 

d*(c*) = d(c* + co), a*(c*) = a(c* + co), r = q - V uo. 

The initial conditions for c*, p*, and u* can easily be seen to be 

(a) c*(x, O) = 0, 
(2.7) (b) p*(xO)=O, 

(c) u* (x, 0) = 0. 

Consequently, solving (1.1 )-(1.3) is equivalent to solving (2.5)-(2.7). For ease 
of notation, we shall drop the superscript * in (2.5)-(2.7) for the time being. 

Let h = (hc, hp), where hc and hp are positive. Let Mh = Mh C W o 
(i) 

be a standard finite element space associated with a quasi-regular polygonal- 
ization of Q and piecewise polynomials of some fixed degree not exceeding 
1. Thus, all standard inverse relations hold on Mh and the approximation 
property 

(2.8) inf ||Z-Zh q < Mh Z /+E q' z W 1+1(Q), 1 < q < oc, 
ZhE 

holds, where H1Z11k q is the norm in the Sobolev space Wk,q(Q). In the fol- 
lowing we also use 11z11k for 11Z11k,2 and jjzjj for 11z110,2 . 

Suppose that Q is a polygonal domain. Given a quasi-uniform decompo- 
sition of Q into triangles or rectangles of diameter less than h, there exist 
Vh =V c V and Wh = Jk c W for k > 0 such that the elements have di- 
ameters bounded by hp. The boundary condition v *v = 0 on OQ is imposed 
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on Vh. Assume that the following approximation properties hold: 

(a) inf Hv - vhiI inf liv - vh IL2(n)2 
VhEV ~ VhEV 

2.9 ~~~~~< Mhp Ml vlm, 
I < m < k + l, (2.9) lP~k l 

(b) infv ||V * (v -Vh) 11 < Mhm Ilvl l lm < m < k, 
VhE Jh'(1V1M+ 

1 V1M 

(c) inf IwI-whII < Mh IWIm' < m < k. 
Wh E Wh 

1 11 

The spaces k and k can be the spaces of Raviart and Thomas [10] 
for k > 0, or the spaces of Brezzi, Douglas, and Marini [3] for k > 1 . If the 
Raviart-Thomas spaces are used, (2.9b) and (2.9c) are also valid for m = k + 1 . 
The discrepancy in the range of the index m makes any attempt at handling 
the two spaces of the same index k simultaneously rather awkward. Hence, 
we will carry out the error analysis only for the Raviart-Thomas space of index 
k. From now on we shall assume Vh x Wh to be the space of [10]. To obtain 
results for the BDM space of [3], one needs only to replace every occurrence of 
k by k- 1 in Theorem 4.1. This is so because the error analysis below depends 
only on (2.9) and (4.6) (with obvious modifications on the range of the index 
when the BDM space is used). Hence, any result in Theorem 4.1 obtained for 
the Raviart-Thomas space of index k is also valid for the BDM space of index 
k - 1 . In other words, the error analysis for these two spaces are identical. 

The semidiscrete finite element approximation for problem (2.5)-(2.7) 
amounts to finding a map {C, U, P}: J -4 Mh x Vh x Wh such that 

(a) (#Fj z) +(DVCVz)+(b(C)UVz) 

+(b(C)uo, Vz) + (e(C)U * VC, z) 
+(e(C)uo * VC, z) + (A(C) * U, z) 

(2.10) =(f(C), z) - (DVco, Vz), ZEMh, 

(bi) (d(C) -ata) + (V. U, w) = (r, w), W E Wh, 

(bii) (a(C)U. v) - (V * v,_P) 
= (V *V, PO) -(a(C)Uo, V), V E V*, 

(c) C(O) = 0, P(O) = 0. 

From (2.6) and (2.7), we have 

(2.11) (V * v, po) - (a(O)uo, v) = 0. v E V. 

Then, setting t = 0 in (2. lObii) and using (2. lOc) and (2.1 1), we obtain 

(2.12) U(O) = 0. 

3. ERROR ESTIMATES FOR THE CONCENTRATION EQUATION 

In the analysis below, all functions of c are assumed to be extended outside 
[O, 1 ] in some smooth fashion. 
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Let us introduce an elliptic projection of the solution of (2.5) onto Mh, which 
is a map c: J -- Mh defined by 

(3.1) +4(c-c,z)=O, ZEMh, 

where A will be selected large enough to ensure the coerciveness of the bilinear 
form on H1 (Q). By standard results on the finite element method for elliptic 
problems, and by [5, 7, 12, 13], we know that 

a(-C ) a02 
(a) j^-cjlj+ + -7(e-c) -+hcJIV(c-c)I 

(3.2) <cMh' (IlcIli+i + ac 2c 1+1) 

(b) Ilec-clloX< Mh 1+1(logh1 l)r,,Clll+l ao 

where 

0 when 1 > 1, 

1 when 1 = 1. 

Using the inverse relations on Mh, we know for z E Mh that 

0C < V (-z) + V (C- Z) + V-c Ot 0?0 t 
Z 

00 a 0,0o at oc0 

?Kh72 (c - z) + V,(c-z) + V-c 

0cc~~~~00 
<?KhL72( j(||29C- C)| + ||0(C - Z~) )+ |V91(C - z)l 

+ Va C 

Choosing z as the interpolant of c in Mh, we see from the above inequality 
that 

a O~~~~~~~c a 
0 < Khc 1 (IcI1+i + ~- 1+ h4 5-1C ) + Vc ~ 

atV 0 c| < 0 (l0I++ at |1+1 + Cl t 11+1, tc)0 at 0l,00< 

This shows that IIV 9 c 1j 0 c is bounded. In a similar fashion one can show that 

I'eIIloo and jjC-110- o are bounded. 
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Write g = C -c, = c - c, subtract (2.5) from (2.1Oa), and apply (3.1) to 
obtain 

~(P Tt z) + (DVg, Vz) 

( (f(C) - f(c), z) - ((o 9 z) - (b(C)U - b(c)u, Vz) 

- ((b(C) - b(c))uo, Vz) - (e(C)U * VC - e(c)u * Vc, z) 

- ((e(C)VC - e(c)Vc) * uo, z) 

-(A(C) * U-A(c) * u, z)+)4, Z), z E Mh. 

Differentiate equation (3.3) to show that 

(P - , z) + (DV aVz) 

= (f(C) - (c)), - ((z4 z) 

- 
a 

(b(C) U - b(c)u), Vz) 

(3.4) - ( (b(C) - b(c))uo, Vz) 

- (t(e(C)U * VC - e(c)u * Vc), z) 

- (aj(e(C)VC - e(c)Vc) uo, z) 

_ 
t (A(C) * U-A(c) u) z) + z ()ZEMh 

By selecting the test function z = , and using the boundedness of 0, jj 0 

and I Ill , it follows from (3.2) that 

ld ( &g &4)+('\ / 

< K {II 2+ || ?h2 } - ( b(C) U - b(c)u), 

- (35a (b(C) - b(c))uo, V a4) 

- 
a 
(e(C)U.VC-e(c)u.VC), 

- ( (e(C)VC - e(c)Vc-) uo ) 

-(n (A(C) U-A(c) *u), 
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Next, observe from (3.2) and the inequality ab < ea2 + b2/4e that 

(b(C) U - b(c)u), V ) 

= a((C)t(U-U),V ) 

+(0 (C~~t(U-u) + -(C) bO(+4'+)U 

+ Ob ( (- )O cb(c)(U dt) 
+ c at ) 

+(b(C)-b(c))Y- atV, 

_3.6) ataat <Ky 
-t 

+11 U- ul 

at||at + t | c 

+ a d + hal-u } 

Similarly, 

(e(C)U VC - e(C)u - Vc) 

= (C)a (U - u) *VC + (C),t u - V ) 

+ ae (C) (_ _+ ) u_ Vc +(e (C) _ Oe 
(c) 

Oc 
u. VcO ct) ac at kack)aFc) atV a y 

+ e(C)U* VaV + e(C) (U - u) * V ,0 (3.7) +atC) U-u.at 

+(e(C) - e(c))u * V t 

+ (e(C) (U VC + e(C)u 

+(e(C) -t e V 
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where 

? (C)c A (Uu-)U) . VC, ) + 

(cat at ? 
|(eC(C)at (U -U) -V4' at)+ 

Oe 

(C)nt 
ac( ) 

- V 
) 

c ( A C()At at ) at ta)t 

(.) + |(e (C)at (U U) ' ve )| 
(3 .8) { | at } 

? KJU- - ||V at || + | |+ at 1 || V|I + 
-t } + 

| (e(C) i9( u)O * VC A 0) 
(3.11) ~ ~ ~ ~ ~ ~ ~~t Otf Jt0{ tl 0 1tl 

2 
2 ~~~~~~~22 

?K(at ~+1){I v124 + at 
+ U-_ u U|} 

(3.9) 
e 

(mCininV 
t o ) <ay (e 

2 
t ){e wy 2 + H2} 

(e(C)U.V a* a-a~ KVc I a- aA 

< | At || at at at| 
+, 

(|| a || +1 

(3.12) (|| 2 2 2 2 +| 1 
<C +a t a t 0- 0+ 

e(C a(U - u) .V5 
ae(C at )7j 

< K 

HV&+ 

- 

+ atU (3.11)f at at____1 
a 

< K ~ 2 + 
~2 + 

( 
)2} 

The remaining terms 'of (3.7) may be treated the same way as above. Hence, 

2 f 12 ( a~2 +' 

<C +K ~H+a t Oo ) 

a - u) 2~ 21+2 + a t JKhc 
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An argument similar to that used above can be applied to the remaining terms 
in (3.5) to show that 

t ' ) + D* V IdTjOt'aOt 2 a t 

(3.13) < K + (a |l + I) (aVt2 + + lu _ u11 ) 

+ |1(U - u) + hC+2} 

where D* is a lower bound of D. Integrate the inequality (3.13) with respect 
to time t to show that 

ax 2 ft 1 2 

at + {l at +( 

<K{ * (i(O) 2 --f [H1 2 ( - +1) 

+ 2Kat] ds+h(al+2} 

Set t = 0 in (2.5) and (2.l0a) and use (2.7), (2.l0c), and (2.12) to obtain 

(3.15) (N 29(C-c)(O),z)=O, zeMh. 

Let z = < (O) in ( 3.15 )a; then 

(3.16) ?| 04 (o) || < K 0|| 1 (o) || < Kh+1 . 

Adding the following inequalities 

(3.17) =l~ll jt dtil~HS ?10t L11411 +11 411at ] 

(3.18) t d]IjV~H2ds< ] Vi ds +K] E V M ds 
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to (3.14), we obtain 

2 
+ 

n 
+ V ds 1 a|til t| ati 

t 2~~~ 
< Ki 2a[|1 + (| at|o 

(3.19) *(HlV~ll2+lld~lH2+llU l + 22) 

+ 2(U-u) ] ds+h h 

where 

Ki K, (licil l c~o | t||lX'11 11/1 | l+l| 1+1 2 I,00 ~~1+1' 2 + 

4. ERROR ESTIMATES FOR THE PRESSURE EQUATION 

In this section we first give error estimates for the pressure equation. These 
estimates are then combined with the estimates obtained in ?3 to yield the main 
theorem of the paper. 

To estimate the errors in the approximation of the pressure equation, we 
again introduce an elliptic projection in the sense of Johnson and Thomde [6]. 
Let (u, pP) E Vh x Wh be the solution of the system 

(a) (V* (a- u), w) + (p - p, w) = O, w E Wh, 
(4.1) (b) (a(c)(u-u),v)-(V7v,p-p)=O, V E Vh5 

(c) (p , 1) = (p, 1), 

where (c, p, u) is the solution of (2.5)-(2.7). 
To show the uniqueness and existence of the solution of (4.1), it suffices to 

show that the associated homogeneous system has only the trivial solution. The 
associated homogeneous system is 

(4.2) (a) (V uw)+(pw)=05 we WO, 
(b) (a(c)R, v)-(V * v,A) =, O. vE Ah 

Choosing w = p and v = a in (4.2) leads to 

(4.3) 0 < a* (u, ) < (a(c)u, R) = (V * R, p) = -(p, p) < ?O 

where a* is a positive number such that a* < a(c). Hence, u = 0 and p = 0. 
In the analysis to follow we shall employ three linear operators: the L - 

orthogonal projections rh: H1 (Q) -- Mh and rh: W --+ Wrespectively de- 
fined by 

(a) ((o-rh*om)=0, meMh, 
(4.4) (b) ((o-rrh , w)= O w E Wh, 
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and the linear operator Th: V -- Vh having the property 

(4.5) (V (v-Thv),w)=0, w E W'. 

From [6] the following results are standard: 

(a) 11 - rh (11 < MhA 114+ 111+, I > 1 

(4.6) (b) k - rh (al < Mh k+lok+l, k > 0, 

(c) H - rh oI||o 00 < Mhp 1(logh7 )I 1/2 H k+2 k > 0, 

k+1 
(d) v - ThvII 

< Mhpz |IVIk+l, k > O. 

Choosing w = p- - rh P and v = u - Thu in (4. 1) and adding the two resulting 

equations, we have 

(a(C)(U - U), U - Thu) - (V Thu), p -p) 

()+ (V * (a - u)4, p - rh.P) + (P - P. P - rhPP) = ?) 

Use the properties of rh and Th to show that 

(V. (u - Thu), p - p) -(V (u - u), p - rhp) 

= (V (* - Thu) p - rh P) -(V (U -Thu) P rhP) )0 

Then from (4.7), 

(a(c)(u-u), u-u)+ (p-pp-p) 

= (a(c)(u - u), Thu-u) + (p -p, rhpP -P) 

<-aHu-uH +2KHTu- 2 1 2 1 2 2 2 u+H-H + rPP 

and from (4.6), 

k+1 
(4.8) lU - u| + IIP --p| < Khp? {IU~lk+l + IlP~lk+l} k > 0. 

Now we derive the L??-error estimates. By (4.lb) and (4.4), 

(4.9) (a(c)(u-u), v) + (rh p-p, V.v) = 0, v E Vh. 

Thus, from [6, Lemma 1.2] and (4.8) we have 

p plo c? K log h_1 Ia(C)(R-U)I 
(4.10) Irh p P-0 - u)H 

Khp' log h-1{ Uk+l + Pk+1l } 
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Consequently, from (4.6c) 

(4. 1 1 ) IIP - P110, OO I IP - rhPPIIOOO + Ilrh P - PIIO,0 
k+1 1 

<Khp logh7 {IIUI1k+l + IIPIk+2}' k > O. 

As for the L2-estimates for 19 (u - u) and 9Q (P - p), we differentiate (4. 1) 
in time to show that 

(a) Va(El , U ) + (W( (P )p),W =0, W E Whi 

(4.12) (b) ya(c) a(U - U), V) + Oa(C)(U- U),V 

- (V-Vj at(P-P)) =0, V E V-. 

at 
Select W = -9 rhPa and v =Oaa- Th 

19t in (4. 12) and proceed as in deriving 
(4.8) to obtain 

(a(c) U), U)) + ((P -P) a (F P) 

= (a(c) (U-U), Th - (( - U), -(U-U)) 

(4.13) 
Oa 

(ac) (El-U) au -Tau + (at P), Opt t < a (U - -l +h (P 1 ) (P- -)rh 

{ || t a T |+|U-l |h a t P t || } 

1 & ~ ~2 2 

2 at 2 Ot 

au au 2 ~ Op Op2 

+Ki ma-Th +IIyU112+ rh 

From (4.6) and (4.8), we have 

(4.14) <h~ IU~~ IIki++O +} k0 

k+1k1 

Similarly, 

a02 k+1 au 
- t2(p -p) ? KhP` IIUI1k+1 + IIPI1k+1 +at k+1 

(4.15) 21 
+ ap + au O ap 

atk+1 a t2 k+1 a t2 k+li 
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Now we can turn to the estimate for the pressure equation. Let 

r = P-p, q =p-p, a= U-E, p= u-u. 

Combine (2.6), (2.1Ob), and (4.1) to show that 

(a) (d(C) a a w) +(V.*Aw) 

(4.16) ==(qjw)- (d(C)a w) 
((d (C) - d(c)) ata ) W E Whi 

(b) (a(C)a, v) - (V v, 7r) 
= ((a(c) - a(C))U, v) + ((a(c) - a(C))uo, v), V E VhJ. 

Differentiate (4.16) with respect to time to show that 

(a) ad(C)t W + ( aw 

= l W - (ad (C)/ad at_ ) 

-ad()t"1 ac)- at C at At' 

/ 
2 

adp 
-(\[d(C)-d(c)] , -t ([() 5c]92 (C)a w 5 

( aa ~~~~ac a a 

(b) (a(C),9t, v) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- (V(C)]-t 
= (j~akc) a(C)]u, v)+ (ac-a() at'a v) 

a [a(c) - a(C)]u, v 

-a(t() at V) , vVE . 

Select the test functions w = 47 and v - in (4.17), add the two equations, 
and use the equality 

,B,(d() t 'At) =2 d(C) - '~)16 At)+(A() tt'A 

d(aira( aau _ ( -V a 7rar\d aci a 
-2a dC at2 7jY C)aa' ) 
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to see that 

( d a?) air 1 / ad aau a (a dQ c) - -+ a(C)0~c0cr()6- 

dt at I at J 28c at~t I at J t At2 at ) 

- ([d(C)a -d(c)] P )+(zj[a(c) - a(C)]u, 
a 

) ac ~atu atat\ ata 

+ ([a(c) - a(C) -T+ [a(c) - a(C)]u -) 

(4. 18) -(aa ( C) autf 't ac ~at' a t a 

a a2 ( 22 22 a2 - + y +W+ 1 + + 

a t at (C) at~c z __C 
2 2 2 

Note that by the triangle inequality 

llacll < a1041 a a +Cc 2 

By the boundedness of 11~0,89o 0 and the known estimates of?) and X, it follows 
from (4.18) that 

1 ad(C)a7 air aad ir \a al 

aa 2 aaua 

(4.19) Hat + at 

a( at 2a 2 2)+ +2} 

from (4.1A8) + th)aht' 
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which upon integration gives 

2 ft Y ds 
at 0 t 

<K 2 +1 0 2 2 ) 

< K at (0) + + -a + -a +1 
(4.20) L / 2 

a ir 2)1C11 

21+2 2k+2) 

Choose t = 0 in (2.6a) and (2. 1Obi), and subtract the resulting equations, to 
show that 

(4.21) (a(O) ( at at (?), W) 0, W E Wh, 

and 

(4.22) a or K a '0| < Kh k+1 

Using (2.7), we see from (4.1) that p(0) = 0 and u(0) = 0. Thus, 7r(0) = 0 
and a(0) = 0. The techniques used in deriving (3.19) from (3.17) and (3.18) 
can be applied to (4.20) to show that 

2 a 7r t2af 
f1121 + _18 1 + 11C112 + tt1 a12ds 

2+~~~~~~~~ h2 + haa2 
atha 

r 2 2 

< K12+18l +ll2 + N ti- +1 l+l ||a r d+| H |atll ds 

(4.23) + { [ ( atr 2 

+h21+2 +h2k+2) 

Take a (1 + K,)-multiple of (4.23), add it to (3.19), and use (4.8) and (4.14) to 
have 

-, 2 
2 r 

2 t p 2 (tau 2 

11~~~11'" +Vll + 11711 + 11C2 + d+s1ll + -~+2 ds 

+t at+ + at ja 
- HOIV+]0 Vat 05 0 

(4.24)at00 / 
(2 a2 + r2 2 

- + ~~~~~ +1Ha2 + c ds a t +h k2) 
21+2 2k+2) 

+ hc +hp" 
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To estimate (4.24), we make the induction hypothesis that 

N 
11~~(V~1Loo(J;L 2(Q)) + aN 

|at L2(J; L- ( 1)) ) at L(J 2(Q)) 

(4.25) + a L L 11 + aHLoo(J;L2(Q))+ hp ) 

< K2(h1+1 + hk+1 I > 1, k>O. 

Thus, from Gronwall's lemma we can derive that 

111L(JH() + aN + 11rl-JL2(j+ air 11 L J;H ()) 11at |L'(J;L 2(Q)) L JL() 1at ILOO(J;L 2(Q)) 

(4.26) + 
111L-(J;L 2(Q)2) 

+ V t L2(J;L2(Q)) at 

< K (hl+l + hk+1 ) > 1, k > O. 

where 

K3 = K3 K, K2, H1U11k+l, H1P11k+l 5 at uk+ 

ap a~u ap 2 
+1 

at k+ a2 ' t2 k+ ||at k+1 at k+ 

Now we turn to the justification of the induction hypothesis (4.25). Obvi- 
ously, (4.25) holds for t = 0. Since 

at aL2(O t;L(0)) at L-Ot;L2(Q) 
(4.27) airk1 

(2 1at L(Ot;L2(Q 
+ L(O t;L2(Q)) 

+ 
hp+) 

is a continuous function in t, there exists some t* > 0 such that 

1+1 k+1* 

(4.28) (a) F(t) < K2(hc + h ) 0 < t < t 

(b) F (t) =K2 (h'+ + hpk+1) t=t 

We want to show that t* = T. By the well-known imbedding inequality [11] 
for two space dimensions, 

(4.29) 11v 11o 00 < K4(0gh 1 ) 12Hv 11 1, v E Mh 
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and using (4.26) and (4.27), we can derive 

F(t) < 
K3K4(logh7 l)1/2{4K3h 

2+2 + (8K3 + 1)h +'hpr+' 
2k+2 

+(4K3+ l)hp+ }, 0 t t. 

Suppose that the relation 

(4.31) hp" (log h- ) - 0 as h -+ 

holds. Then h can be selected to be small enough so that 

F(t*)< K2 (h'+ + hp ) 

Hence, t* = T, and the proof is completed. 
The desired L -optimal error estimates now result from the combination of 

(4.26), (3.2a), (4.8), and (4.14): 

||C CIL-(J;L2(o)) + -(C- C) + HP PIIL(J;L2(Q)) 

(4.32) 
+ at (P-P) 

L-(J;L 2()) 
+ IIU - UIIL(J;L 2()2) 

|| at 
) IL2 (J;L 2(Q)2) 

1+1 k+1 < K5(hc + hp ) 1>1 k > 0 

where 

K5 K5 (IICIIL(J;W1I (Q))' at 
a Q 1IIL'(J;H (Q)) 

L- ' P(J;HL JHk- (Q)) at at 
11 II JH 5lQ) 1 at L2 ( Hk 5 11PIIL-(J;H k+1 A) ) ap a 2p UL(Jk()) 

at| at H 11 | L2(J; Hk+1(A) 

au a2 u 

at at2 

Combining (3.2b), (4.26), and (4.29) results in 

||C-C||Loo(J ;L??(Q))?< K6(h'14 + hp )(logh7 ), 
(4.33) 1 >1 k>0 ? 6={j 1= 1 

1> 15 k 05 8 
2 1>?1, 

where 
K6= K6(K , IICIILoo(J;Wl+?oo(A))) 
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Applying a similar argument as in deriving (4.10), we see from (4.16b) that 

IIITo 00 < Klla(C)a + (a(C) - a(c))(U + uo)II logh71 

< K (h 1+ 1 +hk+1` log h -1 

by (4.26) and (4.32). Then the L -estimates for the pressure follows by this 
estimate and (4.1 1): 

(4.34) |< K7 1+1 ) log hpI , I > 1, k > O. 

where K7 = K7(K5). 
Finally, we can return to the error estimates for the original dependent vari- 

ables c, p, and u, which are the solution of the system (1.1)-(1.3). The 
reader is being reminded that the error estimates obtained before pertain to the 
transformed system whose variables have "*" superscripts. Now define 

(4.35) C =C + rhC c0 P=P + rhp o U U = U *+Thuo, 

where (C*, p*, U*) is the solution of the semidiscrete system (2.5)-(2.7). By 
(2.4), the triangle inequality 

IIC - CH < IIC* - C*I1 + llrhcO - coil 

and (4.32) can be combined with (4.6) to show that 

1+ k+1 k>0 IIC-cH ? K(h1 +1h ), I>1, k> . 

By repeated use of (4.6) and (4.32) in the way shown above, we obtain the 
main theorem of this paper. For the case of using the Raviart-Thomas space of 
index k, k > ? ,we thus have 

Theorem 4.1. Let (c, p, u) be the solution of the continuous problem (1.1)- 
(1.3) and (C, P. U) be defined by (4.35). Suppose that the relation (4.31) on 
the diameters hp and hC holds. Then the following estimates hold: 

(i) 

IIC -CLI(J;L2(j)) + |-1(C- C) + HP-P IIL(J;L2(Q)) 

(4.36) + at (P- P)L 2 + IIU -UIL(J;L 2(Q))2 

+ a (U- u) 
K8ht Lh2(j ; L2>(1)02) 

< K (h 
1+ 

+ hk ) 1 > 1, k > O. 
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where the constant K8 depends on 

(ii)~~~~~~~~~~~~~~~~~li 

) II IIL(J;W (o)) < ' lIP 1, II>(J;H+,I(1)) at L~~~(J; '~ 2 
' J W,-() 

rec of ( by 1 inat L2((4.36)-(4.38). 

In thi secton we indcat possible etenin ofj the) analysisH in Ih preiou 

a u a 2u 
at Le , and a b 

(5.1 h K+ hl h as+ ) 
k 
o+ 

(4.37) th{ e=1 

where Kg depends on K8 and 4.1, m 
(iii) 

(4.38) lI ILO(;() ?K10(h1+j + h k1 )1logh-1, I 1>1 k >O0 

where K10 depends on K8. 

As for the case of the BDM space of index k k > 1 replace every occur- 
rence of k by k - 1 in (4.36)-(4.38). 

5. EXTENSIONS TO SPACE IN THREE DIMENSIONS 

In this section we indicate possible extensions of the analysis in the previous 
sections to three dimensions. The pressure equation can be approximated using 
the spaces of [2, 8]. The error analysis can be carried out in the same way, 
assuming different relations between the discretization parameters. 

Theorem 5.1. Suppose that the mesh parameters satisfy the relations 

(5.1) h2k?2 h-/2 --+O as h -+O. p C 

Then the estimate (4.36) holds. 
Proof. We follow the proof of Theorem 4.1, making changes when necessary. 
It suffices to prove that the induction hypothesis (4.25) holds. 

Using the imbedding theorem for Sobolev spaces in R 3, we get 

(5.2) 11Vll0,6 ? KIIvIIl v e 12(2 
and then, by the inverse inequality in the space Mh,5 

(5.3) ljv Il0 :: < Kh" 12ll1Vll0,6 v VE Mh. 
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Hence, 

(5.4) livl10 cb < Kgh-1/2 V1VII, v E Mh. 

It follows from (5.4), (4.26), and (4.27) that 

(5.5) F~~~~t) 2/+2 +1kl2k+2 (5.5) F (t) < K{Kgh l {4K3hC + (8K3 + l)hc hp + (4K3 +l)h }. 

By (5.1) and (5.5), the induction hypothesis (4.25) is verified. 0 

As a final remark, we point out that the relation (4.31) or (5.1) in the paper 
is much weaker than the condition 

k+1 1 1+1 1 
min(h+ h- , h hp71) )- 0 as h Ofor all k, 

and 

Y1 hphC <-2 fork=O 
given in [4]. 
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